Transfer Learning Approach for Cache-Enabled Wireless Networks

نویسندگان

  • Ejder Baştuğ
  • Mérouane Debbah
چکیده

Locally caching contents at the network edge constitutes one of the most disruptive approaches in 5G wireless networks. Reaping the benefits of edge caching hinges on solving a myriad of challenges such as how, what and when to strategically cache contents subject to storage constraints, traffic load, unknown spatio-temporal traffic demands and data sparsity. Motivated by this, we propose a novel transfer learning-based caching procedure carried out at each small cell base station. This is done by exploiting the rich contextual information (i.e., users’ content viewing history, social ties, etc.) available from deviceto-device (D2D) interactions, referred to as source domain. This prior information is incorporated in the so-called target domain where the goal is to optimally cache strategic contents at the small cells as a function of storage, estimated content popularity, traffic load and backhaul capacity. It is shown that the proposed approach overcomes the notorious data sparsity and cold-start problems, yielding significant gains in terms of users’ quality-ofexperience (QoE) and backhaul offloading, with gains reaching up to 22% in a setting consisting of four small cell base stations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Adaptive Congestion Alleviating Protocol for Healthcare Applications in Wireless Body Sensor Networks: Learning Automata Approach

Wireless Body Sensor Networks (WBSNs) involve a convergence of biosensors, wireless communication and networks technologies. WBSN enables real-time healthcare services to users. Wireless sensors can be used to monitor patients’ physical conditions and transfer real time vital signs to the emergency center or individual doctors. Wireless networks are subject to more packet loss and congestion. T...

متن کامل

Cache-enabled Wireless Networks with Opportunistic Interference Alignment

Both caching and interference alignment (IA) are promising techniques for future wireless networks. Nevertheless, most of existing works on cache-enabled IA wireless networks assume that the channel is invariant, which is unrealistic considering the time-varying nature of practical wireless environments. In this paper, we consider realistic time-varying channels. Specifically, the channel is fo...

متن کامل

Multicast Routing in Wireless Sensor Networks: A Distributed Reinforcement Learning Approach

Wireless Sensor Networks (WSNs) are consist of independent distributed sensors with storing, processing, sensing and communication capabilities to monitor physical or environmental conditions. There are number of challenges in WSNs because of limitation of battery power, communications, computation and storage space. In the recent years, computational intelligence approaches such as evolutionar...

متن کامل

Probabilistic Caching in Wireless D2D Networks: Cache Hit Optimal vs. Throughput Optimal

Departing from the conventional cache hit optimization in cache-enabled wireless networks, we consider an alternative optimization approach for the probabilistic caching placement in stochastic wireless D2D caching networks taking into account the reliability of D2D transmissions. Using tools from stochastic geometry, we provide a closed-form approximation of cache-aided throughput, which measu...

متن کامل

A Novel Ensemble Approach for Anomaly Detection in Wireless Sensor Networks Using Time-overlapped Sliding Windows

One of the most important issues concerning the sensor data in the Wireless Sensor Networks (WSNs) is the unexpected data which are acquired from the sensors. Today, there are numerous approaches for detecting anomalies in the WSNs, most of which are based on machine learning methods. In this research, we present a heuristic method based on the concept of “ensemble of classifiers” of data minin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015